
Project Springfield
A smart and automated storage

Jan Ťulák - jtulak@redhat.com

What is Springfield?
● A collaborative effort to solve certain problems across projects.

○ No “springfield.so” or any binary/executable, but a joint kernel/userland project.

○ “Officially” right now: udisks, libblockdev, blivet, libstoragemgmt

○ Other projects cooperating more loosely or in early development/planning stages.

● Some issues we are trying to solve:
○ Good for human ≠ good for automation (the UNIX way unfit for all?)

○ Informations are fragmented over multiple sources:
■ Redundant queries.
■ Higher CPU usage.

○ No good notification system for storage.

○ Complex APIs, not easy to use by application developers.
2

Project interactions

3

What the specific projects do?
● Blivet

○ Python module for storage configuration.

○ Can model arbitrary number of changes in memory before committing them.

● udisks
○ Daemon providing DBus API for storage configuration and monitoring.

● libblockdev
○ A library wrapping around various fs-utils and storage tools and providing an unified API.

○ Low-level.

● libstoragemgmt
○ Manages a controller-based storage (e.g. NFS).

4

Discussion time
Three main topics:

● Filesystem API

● Mount API

● Storage Information Provider

5

Filesystem API - libblockdev
● I asked about the FS API few weeks ago at linux-fsdevel list.

○ Some interest from potential users.
○ Maintainers: Chicken/egg issue.
○ So we reached for something already there that is “good enough”.

● Works right now (C library with Python bindings).

● Does the screenscraping for you.

● All-in-one, maybe too much dependencies (RAID, …).

● Is this enough, is it useful for anyone else?
○ E.g. not everyone wants to depend on a 3rd party library, but we probably can’t do anything

else until there is enough of users of this...
6

Mount API 1/2
● A single source, data right from kernel and supporting large mount tables.

○ A kernel module + userspace library

● Why not just use libmount as it is?

○ A terrible performance with thousands/ten of thousands volumes (containers, autofs, etc.)

○ For example, starting autofs with a direct mount map of 15,000 entries several key processes
consume all available CPU (to name a few of these, systemd, udisksd,
gvfs-udisks2-volume-monitor and gvfs-trash). And any change does it again.

○ API is too low-level (ideally we want ~5 lines of code, excluding option setup.)

7

Mount API 2/2

● Mount namespaces complicates everything.

○ /proc is currently the only way to get namespace-specific information.

○ Maintaining a database of namespaces and mounts is too costly even for moderate load.

● So we can’t have a daemon, only a library, right?

● Getting incremental changes of mount table straight from the kernel is
important for performance, but it seems like a really difficult thing to do.

○ How to split it? Timestamp and co. is probably too costly/complicated.

○ So a notification to all subscribed listeners on every change?

8

Storage Information Provider 1/2
● Motivation: no reliable way to detect things like “FS is full”

○ Stacked layers, thin provisioning, deduplication… → user gets write failures for no apparent
reason.

○ Notifications, better structured errors able to explain what and where happened.

● Really early preview: https://github.com/raven-au/usip

○ Really, really early

9

Storage Information Provider 2/2

● How to calculate a relative path to a provided root struct? (Namespaces again…)

○ Some functions in kernel can do it, but they are not exported.

○ It probably needs to be a standalone module - it doesn’t fit into any fs code or VFS.

○ Workqueue tasks are unconditionally created with a shared current->fs so set_fs_root() can't
really be done in a worker, so we need to use kernel_thread(), but is not exported too. Would
exporting any of these lead to abuse of mount name spaces? (Probably yes… or other
issues.)

○ What are the implications of cloning a workqueue worker thread without setting CLONE_FS?

10

Thank you
Do you know about a project that would benefit from the cooperation? Tell us!

Contact:
● https://springfield-project.github.io/
● springfield@sourceware.org

These slides:
● https://springfield-project.github.io/lsf2018/

Me:
● Jan Ťulák - jtulak@redhat.com

11

